Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Pentacarbonyl(4-phenylpyridine)tungsten(0) and pentacarbonyl-(2-phenylpyridine)chromium (0)

Bernadette S. Creaven, ${ }^{\mathbf{a}}+$ R. Alan Howie ${ }^{\mathrm{b} *}$ and Conor Long $^{\text {a }}$

${ }^{\text {a }}$ The School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and
${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: r.a.howie@abdn.ac.uk

Received 26 October 2000
Accepted 8 January 2001

In pentacarbonyl(4-phenylpyridine)tungsten(0), $\left[\mathrm{W}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}\right)\right.$ $(\mathrm{CO})_{5}$], the molecules have mm site symmetry and the pyridine ligand, with m symmetry, is completely planar. In pentacarbonyl(2-phenylpyridine)chromium(0), $\left[\mathrm{Cr}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}\right)\right.$ $(\mathrm{CO})_{5}$], the molecules are in general positions and the phenyl and pyridine rings of the ligand are twisted by 67.7 (3) ${ }^{\circ}$ with respect to one another by rotation about the $\mathrm{C}-\mathrm{C}$ bond joining them. In both compounds, the axial $M-\mathrm{C}_{\text {carbonyl }}$ bond trans to the $M-\mathrm{N}_{\text {ligand }}$ bond is significantly shorter than the equatorial $M-\mathrm{C}_{\text {carbonyl }}$ bonds.

Comment

The molecular structures of pentacarbonyl(4-phenylpyridine)tungsten(0), (I) (Fig. 1), and pentacarbonyl(2-phenylpyridine) chromium(0), (II) (Fig. 2), along with that previously reported by Creaven et al. (2000) for pentacarbonyl(di-2pyridylamine)tungsten(0), (III), are formally all very similar. Thus, in all three cases, the metal atom M (M is W or Cr$)$ is sixcoordinate in a distorted octahedral environment comprising five carbonyl ligands and the monodentate N -donor ligand. In every case, the $M-\mathrm{C}_{\text {carbonyl }}$ bond axial and trans to the $M-$ $\mathrm{N}_{\text {ligand }}$ bond is significantly shorter than the equatorial $M-\mathrm{C}$ bonds [see Tables 1 and 2 for (I) and (II), respectively; in (III), the axial bond is 1.967 (7) \AA versus 2.020 (7)-2.063 (8) \AA for the equatorial bonds]. In addition, in all three cases, because the $\mathrm{C}_{\mathrm{ax}}-M-\mathrm{C}_{\mathrm{eq}}$ angles are all less than 90° [Tables 1 and 2 for (I) and (II), respectively; 84.9 (3)-89.2 (3) ${ }^{\circ}$ for (III)], the $M-\mathrm{C}$ bonds are distributed in an umbrella-like manner, with $M-\mathrm{C}_{\mathrm{ax}}$ as the handle and $M-\mathrm{C}_{\mathrm{eq}}$ as the spokes.

The variously substituted N -donor pyridine ligands are, of course, totally different throughout the series. In (I), the

[^0]N -donor ligand has m symmetry and is therefore completely planar. Due to the mm site symmetry of the molecule as a whole, the N -donor ligand plane bisects the angles of one pair of opposite $\mathrm{C}_{\text {eq }}-\mathrm{W}-\mathrm{C}_{\text {eq }}$ angles. Table 1 shows that the endocyclic angles at N, C5, C6 and C9 are all less than the ideal value of 120°, which is consistent with elongation of the ligand in the direction from N to C 9 , although the discrepancy decreases from atom to atom in the series, in the order given above. Similar discrepancies, but fewer in number and with no real regularity, are found in the pyridine ligands of (II) (at N and C7; Table 2) and (III) [116.6 (6) and 115.9 (7) ${ }^{\circ}$ at the donor and free pyridine N , respectively].

(I)

(II)

In (I), the pyridine ligand is attached to the $M(\mathrm{CO})_{5}$ fragment in an end-on manner. In (II) and (III), the mode of attachment is sideways on, brought about by the presence in each case of a substituent species in the 2-position. Despite this, the pyridine ligand in (III), although not constrained by symmetry, is still essentially planar and is oriented with respect to the equatorial carbonyl groups in much the same way as the corresponding ligand in (I).

The situation is very different in the case of (II). Here, in the absence of the bridging amine link present in (III), the phenyl and pyridine rings are twisted through 67.7 (3) ${ }^{\circ}$ [estimated from the dihedral angles in Table 2; this angle is calculated as 67.44 (15) ${ }^{\circ}$ by MPLA in SHELXL97 (Sheldrick, 1997)] in order to avoid impossibly short non-bonding intramolecular contacts.

The planarity of the pyridine ligands in (I) and (III) is reflected in the manner in which the molecules are packed in the unit cells. In (I), the molecules are first of all arranged linearly, head to tail, in the b direction. These rows, with the orientation of the molecules alternating from row to row, form layers parallel to [100], with the pyridine ligands face to face and completely superimposed, and $c / 2[3.933$ (2) \AA] apart. In (III), the pyridine ligands are again face to face but in columns, with coordinates of the form $(0, y, 0)$ and $\left(\frac{1}{2}, y, \frac{1}{2}\right)$, related pair-

Figure 1
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $x, y, \frac{1}{2}-z$; (iii) $\left.1-x, y, z\right]$.
wise by crystallographic centres of symmetry and therefore strictly parallel to one another, and $b / 2$ [3.592 (3) A] apart. No such interactions are found in (II).

Figure 2
The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

For (I), and for (III) reported previously by Creaven et al. (2000), the complex $\mathrm{W}(\mathrm{CO})_{5}$. THF (THF is tetrahydrofuran) was prepared by photolyis of $\mathrm{W}(\mathrm{CO})_{6}$ in argon-purged THF. Addition of a solution of the appropriate pyridine ligand, also in THF, to the filtered solution of the solvate complex, and removal of the solvent under reduced pressure, yielded the crude product. The same procedure was used for the preparation of (II), except that diethyl ether was used as the solvent in place of THF. For all three compounds, recrystallization from de-aerated toluene provided crystals suitable for analysis.

Compound (I)

Crystal data

[$\left.\mathrm{W}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}\right)(\mathrm{CO})_{s}\right]$
$M_{r}=479.09$
Orthorhombic, Cmcm
$a=12.538$ (4) \AA
$b=16.239$ (6) \AA
$c=7.866$ (5) \AA
$V=1601.6(13) \AA^{3}$
$Z=4$
$D_{x}=1.987 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nicolet P3 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.188, T_{\text {max }}=0.485$
1251 measured reflections
1251 independent reflections
1136 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.072$
$S=1.083$
1251 reflections
71 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{W}-\mathrm{C} 1$	$1.955(10)$	$\mathrm{W}-\mathrm{N}$	$2.273(8)$
$\mathrm{W}-\mathrm{C} 2$	$2.037(5)$		
$\mathrm{C} 1-\mathrm{W}-\mathrm{C} 2$	$88.44(12)$	$\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 6-\mathrm{C} 7$	$116.7(9)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 3^{\mathrm{i}}$	$114.0(9)$	$\mathrm{C}^{\mathrm{i}}-\mathrm{C} 9-\mathrm{C} 8$	$119.1(12)$
$\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 4$	$114.8(8)$		

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Compound (II)

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}\right)(\mathrm{CO})_{5}\right]$
$D_{x}=1.498 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=347.24$
Monoclinic, $P 2_{1} / c$
$a=6.223$ (4) \AA
$b=13.635$ (12) \AA
$c=18.170$ (9) \AA
$\beta=92.60(5)^{\circ}$
$V=1540.1(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 14 reflections
$\theta=7.5-10.0^{\circ}$
$\mu=0.767 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow green
$0.56 \times 0.50 \times 0.20 \mathrm{~mm}$

Data collection

Nicolet P3 diffractometer
$\theta / 2 \theta$ scans

$$
h=0 \rightarrow 8
$$

Absorption correction: refined from

$$
k=0 \rightarrow 19
$$

$\Delta F(X A B S 2.0 ;$ Parkin et al., 1995)
$T_{\text {min }}=0.691, T_{\text {max }}=0.858$
4494 measured reflections
4494 independent reflections
1781 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087$
$w R\left(F^{2}\right)=0.157$
$S=1.026$
4494 reflections
208 parameters
H -atom parameters constrained

$$
\theta_{\max }=30.06^{\circ}
$$

$l=-25 \rightarrow 25$
2 standard reflections every 50 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0310 P)^{2} \\
&+1.0286 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 2
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$ for (II).

$\mathrm{Cr}-\mathrm{C} 1$	$1.821(5)$	$\mathrm{Cr}-\mathrm{C} 5$	$1.910(6)$
$\mathrm{Cr}-\mathrm{C} 4$	$1.892(6)$	$\mathrm{Cr}-\mathrm{C} 2$	$1.926(6)$
$\mathrm{Cr}-\mathrm{C} 3$	$1.897(6)$	$\mathrm{Cr}-\mathrm{N}$	$2.216(4)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 4$	$85.4(2)$	$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 2$	$83.0(2)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 3$	$88.7(2)$	$\mathrm{C} 10-\mathrm{N}-\mathrm{C} 6$	$115.8(4)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 5$	$88.9(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.0(5)$
$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-114.7(5)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	$69.1(6)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$66.2(6)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	$-109.9(5)$

As a result of the mm molecular symmetry of (I), the asymmetric unit consists of less than half the molecule. Thus, the $4 c$ (mm) sites contain, in addition to $\mathrm{W}, \mathrm{C} 1$ and O 1 of the axial carbonyl ligand and $\mathrm{N}, \mathrm{C} 5, \mathrm{C} 6$ and C9 of the 2-phenylpyridine ligand. Atoms C3, C4, C7 and C 8 are in the $8 \mathrm{~g}(\mathrm{~m})$ sites. In forming the complete molecule, these last (C3, C4, C7 and C8) are replicated with the symmetry operation $\left(1-x, y, \frac{1}{2}-z\right)$. Atoms C 2 and O 2 in the $16 h$ general positions are the sole representatives of the set of four equatorial carbonyl ligands. The remaining members of the set are generated by
the above symmetry operation together with $\left(x, y, \frac{1}{2}-z\right)$ and ($1-x, y, z$). The comparatively high R value achieved for the structure of (II) is a source of some concern. This may be due in part to a comparatively poor quality and weakly diffracting sample crystal. However, it was noted that the original yellow-green crystal became opaque and colourless in the course of data collection. It is thus possible that partial decomposition of the sample crystal has had a deleterious effect upon the intensity data, although the intensity standard reflection measurements suggested that this was not the case. In both refinements reported here, H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined using a riding model, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the C atom to which they were attached.

For both compounds, data collection: P3 software (Nicolet, 1980); cell refinement: P3 software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: MULTAN87 (Debaerdemaeker et al., 1987); program(s) used to refine structure: SHELXL97
(Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1123). Services for accessing these data are described at the back of the journal.

References

Creaven, B. S., Howie, R. A. \& Long, C. (2000). Acta Cryst. C56, e181-182.
Debaerdemaeker, T., Germain, G., Main, P., Tate, C. \& Woolfson, M. M.
(1987). MULTAN87. Universities of York, England, and Louvain, Belgium.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Howie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.
Nicolet (1980). P3/R3 Data Collection Operator's Manual. Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, CA 95014, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: \dagger Present address: School of Science, Institute of Technology, Tallaght, Dublin 24, Ireland.

